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THIS NOTE gives a condition, condition-n, on a four-dimensional surgery problem which 

guarantees the existence of a topological solution. This criteria is then applied to the 

fundamental or “atomic surgery” problems, M4 +X. It is seen that these satisfy condition-lc 

iff a fairly weak transversality condition holds for the map classifying the fundamental group: 

X+ V S’. Combining these two observations, we see that the topological surgery “theorem” 

holds in dimension four iff a certain problem in homotopy theory can be solved. 

We consider surgery problems in the sense of Wall [6] (M, 8)&(X, a) which are Znl(X)- 

equivalences over dX and have a well defined-and vanishing--obstruction 6’ in L” or Lh 

(n,(X)). Also we presume low dimensional surgery has been done so that f induces an 

isomorphism on x1 and ker,(f) is a direct sum of standard planes. In this case, we may let 

h:lS’ V S2+M4 represent k,(f). We say that h satisfies condition-n if every loop in Q/S’ V S’) 

is null homotopic in M. (In other words the double points of h do not wrap around the 

fundamental group of M.) Similarly,fsatisfies condition-7c if it is normally bordant (rel a) to 

anf’ such that k,(f’) is represented by some h’ satisfying condition-n. We prove: 

THEOREM 1. Iff satisfies condition IT then f is normally cobordant (rel 2) to a (simple in the 

case qf 0 = OE L”) homotopy Pquivalence. 

Remark. If we further assumed x,(M4-h(lS2 VS2))‘“Ed.n,(M4) to be an isomorphism 

then the theorem would follow from earlier results on doubles of boundary links [2]. 

Unfortunately, this strengthened hypothesis is often difficult to achieve in practice. The 

reason is that the finger moves used to reduce the kernel of inc, introduce loops in 

h(jS2 V S2) exactly of the sort we wish to exclude. 

Proof: Put h in general position. Let ~ 1_ =. 1 “(h(S2 V S2)) be the regular neighborhood. 

Without loss of generality, we assume .1” is connected. As in [2] we will describe a typical 

link L such that zero framed surgery on L, Y(L), is diffeomorphic to dJ*. 

We will build a bordism in four steps. The first step is to form W, = Y’(L) x [O,l]. The 

second step is to attach certain “generalized kinky handles” to 9’(L) x 1 to form W,. The 

third step forms W, by attaching certain “relation” 2-handles to 9’(L) x 0. The final step 

deletes imbedded kinky handles in ( W,, Z0 W,) which yields W,. The general plan is, as in 

[2], to produce (W,;2,,8,) with certain key properties which enable surgery to be 

completed. 

tThis work is supported in part by NSF DMS83-03126 and MacArthur Foundation Award. 

171 



172 Michael H. Freedman 

The necessary homological (and fundamental group) properties of W, are given in 

Lemma 3 of [2] (substitute U’, for Q). to which the reader should refer. The argument there 

will not be reproduced but modified. 

The lower boundary zO W, is required to be zero framed surgery on a “good boundary 

link” L (with associated surgery problem P) and S, W4 is equal to ?(. i’*) where I .+ is a 

regular neighborhood of the 2-complex K formed from Ir(ljS’ V S’) by attaching immersed 

(general position) null homotopies to a basis for nl(h(lS’ V S’)). It is required M; should be 

Zn,-homology equivalent to a four-dimensional one-handle body with the interior of 

another null homotopic one-handle body deleted from its interior. Cutting out I ‘+ and 

giving in W,uP concentrates the surgery problem away from the fundamental group and 

leads to the solution. 

The main difference between the present setting and [2] is that when K is written 

K = h(lS’ V S’)uA’s the 2-cells A may have interior intersections with Ir(lS’ V S’). This 

means that, I’+ is not obtained from. 1” by attaching kinky-handles but rather by attaching 

objects of the form (A-lb’s) x P/self-plumbings, where 8s are interiors of disjoint closed 

subdisks in interior (A). That is, we attach “kinky planar surfaces.” 

In what follows link ramifications do not seriously affect the argument. In Figs 1-5. we 

assume /r(yS2 V S2) has the form: 

Fig. 1 

That is. 1.S’ V S’ = S’ V S’ and h introduces one double point into each sphere. and one pair 

of intersection points between the spheres. From Kirby calculus we calculate a description 

for L. 

Fig 2 
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Note: clasp parity is not important and not distinguished. Also one component / of L is 

not drawn as a circle but as a wedge of two circles. This is the spine ofa Siefert surface for i. To 

obtain / plumb to untwisted bands along the wedge. These conventions simplify 

manipulations. 

The boundaries of the disks (6’s) attach to the small circles linking the 2-handles in Fig. 2. 

These become the serrated curves a and b in Fig. 3. It is easy to see that L is a boundary link. 

L=dS. There is a rather natural choice of S visible in Fig. 3; choose this S. Let (y’s} be a 

collection of simple loops representing a simplectic basis of S. One may check that the curves: 

a, b, -y’ s are disjoint or may be perturbed to be disjoint from S. It follows that 

Cal, PI, 13h,(S3 -J%, 

where w denotes the intersection of the finite lower central series. As in [2] handles may be 

attached along a restricted class of curves: i’scY(L) x 0 to kill [a], [b], and [y’s]. The 

restriction to this class is necessary to achieve the required properties of the lower boundary 

& w,. 
Consider the analog of k” (p. 460 [Z]). In our setting k” will have three pieces: product 

collar = meridian loop x I, a planar surface, and caps deployed as below. 

9(L) x fO.11 

Fig. 4 

Clearly there is a potential (not drawn) for the caps on the planar surface to intersect the 

caps on S (although the former are easily arranged to be disjoint from S itself). This will be a 

problem since we wish to construct several (disjoint) geometrically dual spheres to the k”‘s. 

At this point we normalize the construction of ,I ‘+ from L f _ (using the spinning trick 

[3]) so that the homological framing of the A’s w.r.t. Fig. 3 is zero. Let n be the total number 

of disks 9’ in the description of the planar surfaces, and let m be the total number of self- 

plumbings (kinks). 

In the level Y(L) x l/2, let S denote the completion of s^ to a closed surface. In that level 

take [n(n + I)/23 +m+ 2 parallel copies of s^. Find caps in [9’(L) x [O, l/2] u two- 

handles] for these surfaces. Using the “capped-surface trick,” the copies of S may be 

transformed into a collection of [(n(n + 1))/2] + m + 2 disjoint immersed dual spheres to each 

k”. All intersections (and by this we include all self intersections) of the k”‘s may be oriented 

(in one of two ways) and then classified according to their associated fundamental group 

elements in rzr( W,). There need be no more than [(n(n+ 1))/2] +m classes. To each class of 

intersection and each k” assign a fixed dual. Remove intersections in this class by piping to a 

parallel copy of the assigned dual. The results are {kl’s}. It may be checked that all the 

double points in this collection have the trivial associated element in rci( W3). Tubing into 
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copies of one of the two remaining duals will restore the attaching framing to zero (call the 

results k”s). The final dual exhibits the (actually unnecessary, but technically convenient) 

condition rc,( W,-+ u(k’))+x,( W,) is an isomorphism. 

Form W,= W, - u(k’). That W, meets its design specification is similar to the 

verification in [Z]. We only note that the link L” (with (L”) = C, W,) is obtained from Fig. 3 by: 

(1) adding the curves {i‘s); (2) ramified Whitehead doubling of the original components: and 

(3) adding commutator curves formed by plumbing pairs of untwisted bands centered along 

parallel copies of the original components; thus L” is a g-b-link. This completes the proof of 

Theorem 1. 

The atomic surgery problems (see [2] for references) all have targets of the form (A’, ix’ ) 

where X is a mapping cylinder A4 (N 3L VS’) from a closed three-manifold N3 to a wedge of 

circles. The map r must satisfy the conditions: (1) rx# is onto, and (2) ker r4 is a perfect 

group. Furthermore, the atomic problems are diffeomorphisms over ?X 2 N”. If such a 

problem has a solution: (M, N3)$(X, N3) (where k is a homotopy equivalence equal to the 

identity on the boundary), then_ by topological transversality ([4]) the composition 

M;X+ VS’ may be perturbed to be transverse (relative to any map transverse on 

ZM = N3) to the collection of points {Pi) c V S’ opposite the base point in each circle 

summand. Thus the surgery “theorem” implies a strong form of “Poincari transversality” 

for X+ VS’. 

Conversely we will show that a weak form of Poincare transversality implies the surgery 

theorem. Curiously this implies that a weak transversality is automatically promoted to a 

much stronger type. However, the main point of this observation is that the surgery 

“theorem” is equivalent to a homotopy theoretic question-unfortunately not an easy one. 

Let (Y,C) be a C.W. complex with finitely generated fundamental group with 1 an 

orientable closed surface. We say (Y, C) is a three-dimensional Z-L&her: duuliry puir 

(3-Z-LDP) if there is a homology class ~EH~( Y, C; Z) so that the cup product with 11 induces 

isomorphisms: 

H*(Y,z;Z)+H3_JY;Z) and H*(Y:Z)+H,_,(Y,C;Z). 

If E = 4. Y is called a Z-Poincart duality space (3-Z-PDS). Similarly a C.W. pair (Z, Y) is a 

(4-Z-LDP) if ni(Z) is finitely generated, Y is a (3-Z-PDS) and there exists ~EH,(Z, Y;Z) 

inducing Lefschetz duality as above. 

We say that (X)+( VS’) is weakly transverse to {Pi) if there is an (X’, N3) homotopy 

equivalent (rel id on S) to (X, N3) and X’ can be decomposed as: X’= Hu(l Y, x I) with the 
1 

unions taking place over 1 Yi x {0, 1) and the induced inclusions x,icc?X’= N’ being the 

inverse images of (Pii under some (transverse) map homotopic to a. The pair (H,?H) is 

required to be a (4-Z-LDP) and ( Yi, iTi) a (3-Z-LDP). (These requirements are not actually 

independent, the first follows from the second.) 

THEOREM 2. Let f: (M, N)+(X, N) b e un atomic suryery problem. Suppose X5 V S’ is 

weakly transverse to {Pi} then f is normally cohordant (rel ?) to a homotopy equivalence. 

Proof We show that f is normally cobordant (rel (7) to j” satisfying condition-n. 

Theorem 1 then applies. Since the Cappell-Shaneson r-group T,(Z[n, Yi]+Z) 2 L,(e) 
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Fig. 5. 

r0 (see [ 11) we may normally bordf(rel2) to an integral homology equivalence over l( Yi 

x I). (Details of this argument in the low dimensional case are also given by Turaev ;5]). 

Now cut open to get an integral homology surgery problem g over H. (By Myer- 

Vietoris we have, at this point, a Z-homology equivalence over i;H.) Perform zero- and one- 

surgeries to make g* an isomorphism. A homological argument shows that the signature of 

the (singular) intersection form on H is equal to signature (M) = e(f) + signature X = 0. The 

normal data implies that the intersection form on k2(g; Z) is even. Thus by the classification 

of nonsingular quadratic forms k,(g; Z) is a sum of standard planes 0 
0 1 

I I 1 0 
over the integers. 

Since g# is an isomorphism k,(g;Z) is spherical. Thus a basis for the standard planes is 

represented by a map Q(S* V S’)). 

This basis for the integral kernel of g becomes a ZFrc,X]-basis for the kernel of the 

surgery problemf’:M’+X obtained by regluing H. Since n,(H) 
inc + 

-x1(X) is the zero map, 

this basis satisfies condition-x, and the proof is complete. 
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