POINCARÉ TRANSVERSALITY AND FOUR-DIMENSIONAL SURGERY

MICHAEL H. FREEDMAN[†]

(Received 8 September 1986)

This NOTE gives a condition, condition- π , on a four-dimensional surgery problem which guarantees the existence of a topological solution. This criteria is then applied to the fundamental or "atomic surgery" problems, $M^4 \rightarrow X$. It is seen that these satisfy condition- π iff a fairly weak transversality condition holds for the map classifying the fundamental group: $X \rightarrow \forall S^1$. Combining these two observations, we see that the topological surgery "theorem" holds in dimension four iff a certain problem in homotopy theory can be solved.

We consider surgery problems in the sense of Wall [6] $(M, \partial) \stackrel{f}{\to} (X, \partial)$ which are $Z\pi_1(X)$ equivalences over ∂X and have a well defined—and vanishing—obstruction θ in L^s or L^h $(\pi_1(X))$. Also we presume low dimensional surgery has been done so that f induces an isomorphism on π_1 and ker₂(f) is a direct sum of standard planes. In this case, we may let $h: ||S^2 \vee S^2 \to M^4$ represent $k_2(f)$. We say that h satisfies condition- π if every loop in $h(||S^2 \vee S^2)$ is null homotopic in M. (In other words the double points of h do not wrap around the fundamental group of M.) Similarly, f satisfies condition- π if it is normally bordant (rel ∂) to an f' such that $k_2(f')$ is represented by some h' satisfying condition- π . We prove:

THEOREM 1. If f satisfies condition π then f is normally cobordant (rel ∂) to a (simple in the case of $\theta = 0 \in L^s$) homotopy équivalence.

Remark. If we further assumed $\pi_1(M^4 - h(||S^2 \vee S^2)) \xrightarrow{\text{ine}_{\#}} \pi_1(M^4)$ to be an isomorphism then the theorem would follow from earlier results on doubles of boundary links [2]. Unfortunately, this strengthened hypothesis is often difficult to achieve in practice. The reason is that the finger moves used to reduce the kernel of inc_# introduce loops in $h(||S^2 \vee S^2)$ exactly of the sort we wish to exclude.

Proof. Put h in general position. Let $\mathcal{N} = \mathcal{N}(h(S^2 \vee S^2))$ be the regular neighborhood. Without loss of generality, we assume \mathcal{N} is connected. As in [2] we will describe a typical link L such that zero framed surgery on L, $\mathcal{S}(L)$, is diffeomorphic to $\partial \mathcal{N}$.

We will build a bordism in four steps. The first step is to form $W_1 = \mathscr{S}(L) \times [0,1]$. The second step is to attach certain "generalized kinky handles" to $\mathscr{S}(L) \times 1$ to form W_2 . The third step forms W_3 by attaching certain "relation" 2-handles to $\mathscr{S}(L) \times 0$. The final step deletes imbedded kinky handles in $(W_3, \partial_0 W_3)$ which yields W_4 . The general plan is, as in [2], to produce $(W_4; \partial_1, \partial_0)$ with certain key properties which enable surgery to be completed.

[†]This work is supported in part by NSF DMS83-03126 and MacArthur Foundation Award.

The necessary homological (and fundamental group) properties of W_4 are given in Lemma 3 of [2] (substitute W_4 for Q), to which the reader should refer. The argument there will not be reproduced but modified.

The lower boundary $\hat{c}_0 W_4$ is required to be zero framed surgery on a "good boundary link" L (with associated surgery problem P) and $\hat{c}_1 W_4$ is equal to $\hat{c}(.1^{++})$ where $.1^{++}$ is a regular neighborhood of the 2-complex K formed from $h(||S^2 \vee S^2)$ by attaching immersed (general position) null homotopies to a basis for $\pi_1(h(||S^2 \vee S^2))$. It is required W_4 should be $Z\pi_1$ -homology equivalent to a four-dimensional one-handle body with the interior of another null homotopic one-handle body deleted from its interior. Cutting out $.1^{++}$ and giving in $W_4 \cup P$ concentrates the surgery problem away from the fundamental group and leads to the solution.

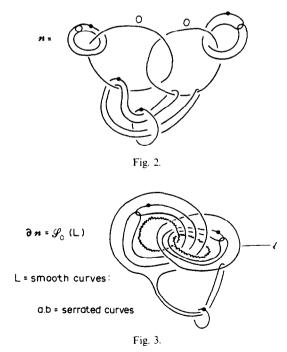
The main difference between the present setting and [2] is that when K is written $K = h(||S^2 \vee S^2) \cup \Delta$'s the 2-cells Δ may have interior intersections with $h(||S^2 \vee S^2)$. This means that \mathcal{A}^{++} is not obtained from \mathcal{A}^{-} by attaching kinky-handles but rather by attaching objects of the form $(\Delta - ||\delta's) \times D^2$ /self-plumbings, where δ 's are interiors of disjoint closed subdisks in interior (Δ). That is, we attach "kinky planar surfaces."

In what follows link ramifications do not seriously affect the argument. In Figs 1–5, we assume $h(||S^2 \vee S^2)$ has the form:



Fig. 1.

That is, $||S^2 \vee S^2 = S^2 \vee S^2$ and h introduces one double point into each sphere, and one pair of intersection points between the spheres. From Kirby calculus we calculate a description for L.



172

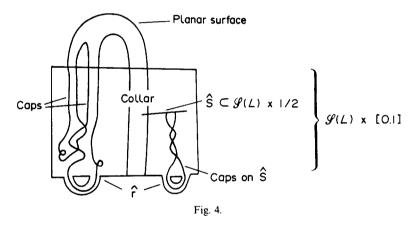
Note: clasp parity is not important and not distinguished. Also one component ℓ of L is not drawn as a circle but as a wedge of two circles. This is the spine of a Siefert surface for ℓ . To obtain ℓ plumb to untwisted bands along the wedge. These conventions simplify manipulations.

The boundaries of the disks $\{\delta$'s $\}$ attach to the small circles linking the 2-handles in Fig. 2. These become the serrated curves a and b in Fig. 3. It is easy to see that L is a boundary link, $L = \partial S$. There is a rather natural choice of S visible in Fig. 3; choose this S. Let $\{\gamma$'s $\}$ be a collection of simple loops representing a simplectic basis of S. One may check that the curves: a, b, γ 's are disjoint or may be perturbed to be disjoint from S. It follows that

$$[a], [b], [\gamma's] \in \pi_1(S^3 - L)_{\omega},$$

where ω denotes the intersection of the finite lower central series. As in [2] handles may be attached along a restricted class of curves: $\hat{F}s \subset \mathscr{S}(L) \times 0$ to kill [a], [b], and [γ 's]. The restriction to this class is necessary to achieve the required properties of the lower boundary $\partial_0 W_4$.

Consider the analog of k^0 (p. 460 [2]). In our setting k^0 will have three pieces: product collar = meridian loop × I, a planar surface, and caps deployed as below.



Clearly there is a potential (not drawn) for the caps on the planar surface to intersect the caps on S (although the former are easily arranged to be disjoint from S itself). This will be a problem since we wish to construct several (disjoint) geometrically dual spheres to the k^{0} 's.

At this point we normalize the construction of \mathcal{N}^+ from \mathcal{N}^- (using the spinning trick [3]) so that the homological framing of the Δ 's w.r.t. Fig. 3 is zero. Let *n* be the total number of disks \mathscr{S} in the description of the planar surfaces, and let *m* be the total number of self-plumbings (kinks).

In the level $\mathscr{S}(L) \times 1/2$, let S denote the completion of \hat{S} to a closed surface. In that level take [n(n+1)/2] + m + 2 parallel copies of \hat{S} . Find caps in $[\mathscr{S}(L) \times [0, 1/2] \bigcup_{\hat{F}'s}$ two-handles] for these surfaces. Using the "capped-surface trick," the copies of S may be transformed into a collection of [(n(n+1))/2] + m + 2 disjoint immersed dual spheres to each k^0 . All intersections (and by this we include all self intersections) of the k^0 's may be oriented (in one of two ways) and then classified according to their associated fundamental group elements in $\pi_1(W_3)$. There need be no more than [(n(n+1))/2] + m classes. To each class of intersection and each k^0 assign a fixed dual. Remove intersections in this class by piping to a parallel copy of the assigned dual. The results are $\{k^1$'s}. It may be checked that all the double points in this collection have the trivial associated element in $\pi_1(W_3)$. Tubing into

copies of one of the two remaining duals will restore the attaching framing to zero (call the results k^2 's). The final dual exhibits the (actually unnecessary, but technically convenient) condition $\pi_1(W_3 \rightarrow \bigcup(k^2)) \rightarrow \pi_1(W_3)$ is an isomorphism.

Form $W_4 = \overline{W_3 - \bigcup(k^2)}$. That W_4 meets its design specification is similar to the verification in [2]. We only note that the link L'' (with $(L'') = \hat{c}_0 W_4$) is obtained from Fig. 3 by: (1) adding the curves $\{\hat{r}s\}$; (2) ramified Whitehead doubling of the original components; and (3) adding commutator curves formed by plumbing pairs of untwisted bands centered along parallel copies of the original components; thus L'' is a g-b-link. This completes the proof of Theorem 1.

The atomic surgery problems (see [2] for references) all have targets of the form $(X, \partial X)$ where X is a mapping cylinder $M(N^3 \xrightarrow{\alpha} V S^1)$ from a closed three-manifold N^3 to a wedge of circles. The map α must satisfy the conditions: (1) α_{\pm} is onto, and (2) ker α_{\pm} is a perfect group. Furthermore, the atomic problems are diffeomorphisms over $\partial X \cong N^3$. If such a problem has a solution: $(M, N^3) \xrightarrow{\cong}_e (X, N^3)$ (where k is a homotopy equivalence equal to the identity on the boundary), then by topological transversality ([4]) the composition $M \xrightarrow{e}_e X \to \bigvee S^1$ may be perturbed to be transverse (relative to any map transverse on $\partial M = N^3$) to the collection of points $\{P_i\} \subset \bigvee S^1$ opposite the base point in each circle summand. Thus the surgery "theorem" implies a strong form of "Poincaré transversality" for $X \to \bigvee S^1$.

Conversely we will show that a weak form of Poincaré transversality implies the surgery theorem. Curiously this implies that a weak transversality is automatically promoted to a much stronger type. However, the main point of this observation is that the surgery "theorem" is equivalent to a homotopy theoretic question—unfortunately not an easy one.

Let (Y, Σ) be a C.W. complex with finitely generated fundamental group with Σ an orientable closed surface. We say (Y, Σ) is a three-dimensional Z-Lefschetz duality pair (3-Z-LDP) if there is a homology class $\mu \in H_3(Y, \Sigma; Z)$ so that the cup product with μ induces isomorphisms:

$$H^*(Y,\Sigma;Z) \rightarrow H_{3-*}(Y;Z)$$
 and $H^*(Y;Z) \rightarrow H_{3-*}(Y,\Sigma;Z)$.

If $\Sigma = \phi$. Y is called a Z-Poincaré duality space (3-Z-PDS). Similarly a C.W. pair (Z, Y) is a (4-Z-LDP) if $\pi_1(Z)$ is finitely generated, Y is a (3-Z-PDS) and there exists $\mu \in H_4(Z, Y; Z)$ inducing Lefschetz duality as above.

We say that $(X) \rightarrow (\forall S^1)$ is weakly transverse to $\{P_i\}$ if there is an (X', N^3) homotopy equivalent (rel *id* on ∂) to (X, N^3) and X' can be decomposed as: $X' = H \cup (\prod_i Y_i \times I)$ with the unions taking place over $\prod_i Y_i \times \{0, 1\}$ and the induced inclusions $\sum_i \subset \partial X' = N^3$ being the inverse images of $\{P_i\}$ under some (transverse) map homotopic to α . The pair $(H, \partial H)$ is required to be a (4-Z-LDP) and (Y_i, Σ_i) a (3-Z-LDP). (These requirements are not actually independent, the first follows from the second.)

THEOREM 2. Let $f: (M, N) \rightarrow (X, N)$ be an atomic surgery problem. Suppose $X \xrightarrow{\alpha} \lor S^1$ is weakly transverse to $\{P_i\}$ then f is normally cobordant (rel ∂) to a homotopy equivalence.

Proof. We show that f is normally cobordant (rel ∂) to f' satisfying condition- π . Theorem 1 then applies. Since the Cappell-Shaneson Γ -group $\Gamma_3(Z[\pi_1 Y_i] \rightarrow Z) \cong L_3(e)$

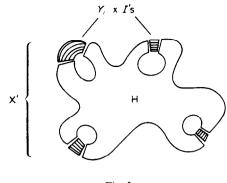


Fig. 5.

 $\cong 0$ (see [1]) we may normally bord $f(\text{rel } \partial)$ to an integral homology equivalence over $\parallel (Y_i)$

× 1). (Details of this argument in the low dimensional case are also given by Turaev [5]). Now cut open to get an integral homology surgery problem g over H. (By Myer-Vietoris we have, at this point, a Z-homology equivalence over ∂H .) Perform zero- and onesurgeries to make g_{\pm} an isomorphism. A homological argument shows that the signature of the (singular) intersection form on H is equal to signature $(M) = \theta(f) + \text{signature } X = 0$. The normal data implies that the intersection form on $k_2(g; Z)$ is even. Thus by the classification

of nonsingular quadratic forms $k_2(g; Z)$ is a sum of standard planes $\bigoplus \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ over the integers.

Since g_* is an isomorphism $k_2(g; Z)$ is spherical. Thus a basis for the standard planes is represented by a map $h(||(S^2 \vee S^2))$.

This basis for the integral kernel of g becomes a $Z[\pi_1 X]$ -basis for the kernel of the surgery problem $f': M' \to X$ obtained by regluing H. Since $\pi_1(H) \xrightarrow{\text{inc} \#} \pi_1(X)$ is the zero map, this basis satisfies condition- π , and the proof is complete.

REFERENCES

- 1. S. CAPPELL and J. SHANESON: The codimension two placement problem and homology equivalent manifolds, Ann. Math. 99 (1974), 277-348.
- 2. M. H. FREEDMAN: A new technique for the link slice problem, Invent. Math. 80 (1985), 453-465.
- 3. M. H. FREEDMAN and R. KIRBY: A geometric proof of Rochlin's theorem, Proc. Math. Soc. Memoirs, 12 p. 191 (1977).
- 4. F. QUINN: Ends of Maps. III. Dimensions 4 and 5, J. Diff. Geom. 17 (1982), 503-521.
- 5. V. G. TURAEV: Nilpotent homotopy types of closed 3-manifolds (preprint).
- 6. C. T. C. WALL: Surgery on Compact Manifolds, Academic Press, London (1970).

Department of Mathematics University of California, San Diego La Jolla, CA 92093, U.S.A.